Skip to content

Files

Latest commit

451906e · May 26, 2020

History

History

nasnet

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
Feb 27, 2018
Oct 30, 2017
May 26, 2020
May 26, 2020
May 26, 2020
May 26, 2020
May 26, 2020
May 26, 2020

README.md

TensorFlow-Slim NASNet-A Implementation/Checkpoints

This directory contains the code for the NASNet-A model from the paper Learning Transferable Architectures for Scalable Image Recognition by Zoph et al. In nasnet.py there are three different configurations of NASNet-A that are implementented. One of the models is the NASNet-A built for CIFAR-10 and the other two are variants of NASNet-A trained on ImageNet, which are listed below.

Pre-Trained Models

Two NASNet-A checkpoints are available that have been trained on the ILSVRC-2012-CLS image classification dataset. Accuracies were computed by evaluating using a single image crop.

Model Checkpoint Million MACs Million Parameters Top-1 Accuracy Top-5 Accuracy
NASNet-A_Mobile_224 564 5.3 74.0 91.6
NASNet-A_Large_331 23800 88.9 82.7 96.2

Here is an example of how to download the NASNet-A_Mobile_224 checkpoint. The way to download the NASNet-A_Large_331 is the same.

CHECKPOINT_DIR=/tmp/checkpoints
mkdir ${CHECKPOINT_DIR}
cd ${CHECKPOINT_DIR}
wget https://storage.googleapis.com/download.tensorflow.org/models/nasnet-a_mobile_04_10_2017.tar.gz
tar -xvf nasnet-a_mobile_04_10_2017.tar.gz
rm nasnet-a_mobile_04_10_2017.tar.gz

More information on integrating NASNet Models into your project can be found at the TF-Slim Image Classification Library.

To get started running models on-device go to TensorFlow Mobile.

Sample Commands for using NASNet-A Mobile and Large Checkpoints for Inference


Run eval with the NASNet-A mobile ImageNet model

DATASET_DIR=/tmp/imagenet
EVAL_DIR=/tmp/tfmodel/eval
CHECKPOINT_DIR=/tmp/checkpoints/model.ckpt
python tensorflow_models/research/slim/eval_image_classifier \
--checkpoint_path=${CHECKPOINT_DIR} \
--eval_dir=${EVAL_DIR} \
--dataset_dir=${DATASET_DIR} \
--dataset_name=imagenet \
--dataset_split_name=validation \
--model_name=nasnet_mobile \
--eval_image_size=224

Run eval with the NASNet-A large ImageNet model

DATASET_DIR=/tmp/imagenet
EVAL_DIR=/tmp/tfmodel/eval
CHECKPOINT_DIR=/tmp/checkpoints/model.ckpt
python tensorflow_models/research/slim/eval_image_classifier \
--checkpoint_path=${CHECKPOINT_DIR} \
--eval_dir=${EVAL_DIR} \
--dataset_dir=${DATASET_DIR} \
--dataset_name=imagenet \
--dataset_split_name=validation \
--model_name=nasnet_large \
--eval_image_size=331