贝塞尔曲线于1962年,由法国工程师皮埃尔·贝塞尔(Pierre Bézier)所广泛发表,他运用贝塞尔曲线来为汽车的主体进行设计。贝塞尔曲线最初由Paul de Casteljau于1959年运用de Casteljau算法开发,以稳定数值的方法求出贝塞尔曲线。
在计算机图形学中贝赛尔曲线的运用也很广泛,Photoshop中的钢笔效果,Flash5的贝塞尔曲线工具,在软件GUI开发中一般也会提供对应的方法来实现贝赛尔曲线。
给定点P0、P1,线性贝兹曲线只是一条两点之间的直线。
就像由0至1的连续t,B(t)描述一条由P0至P1的直线。
二次方贝塞尔曲线的路径由给定点P0、P1、P2的函数B(t)追踪:
P0、P1、P2、P3四个点在平面或在三维空间中定义了三次方贝塞尔曲线。曲线起始于P0走向P1,并从P2的方向来到P3。一般不会经过P1或P2;这两个点只是在那里提供方向资讯。P0和P1之间的间距,决定了曲线在转而趋进P2之前,走向P1方向的“长度有多长”。
(PS:以上内容来自Wike)
数学的一节内容只要有个直观的感受就好,重点主要是Android中的贝塞尔曲线。
Path.quadTo是Android的二次贝塞尔曲线的API,示例如下。
@Override
protected void onSizeChanged(int w, int h, int oldw, int oldh) {
super.onSizeChanged(w, h, oldw, oldh);
mViewWidth = w;
mViewHeight = h;
mWidth = mViewWidth - getPaddingLeft() - getPaddingRight();
mHeight = mViewHeight - getPaddingTop() - getPaddingBottom();
r = Math.min(mWidth,mHeight)*0.4f;
rectF = new RectF(-r,-r,r,r);
}
@Override
protected void onDraw(Canvas canvas) {
mPaint.setColor(Color.MAGENTA);
mPaint.setStrokeWidth(8);
canvas.translate(mViewWidth/2,mViewHeight/2);
mPath.moveTo(-r/2,0);
mPath.quadTo(0,-r/2,r/2,0);
canvas.drawPath(mPath,mPaint);
mPath.rewind();
mPaint.setColor(Color.GRAY);
mPaint.setStrokeWidth(20);
canvas.drawPoints(new float[]{
start.x,start.y,
end.x,end.y,
control1.x,control1.y
},mPaint);
}
- 使用二次贝塞尔函数完成一个正弦波,这里使用rQuadTo
@Override
protected void onDraw(Canvas canvas) {
mPaint.setColor(Color.MAGENTA);
mPaint.setStrokeWidth(8);
canvas.translate(mViewWidth/2,mViewHeight/2);
mPath.moveTo(-r,0);
mPath.rQuadTo(r/2,-r/8,r,0);
mPath.rQuadTo(r/2,r/8,r,0);
canvas.drawPath(mPath,mPaint);
mPath.rewind();
}
- 增加一个圆,以r为半径,(0,0)为圆心
canvas.drawCircle(0,0,r,mPaint2);
- 增加一个连接正弦波两端点的半圆弧
rectF = new RectF(-r,-r,r,r);
mPath.addArc(rectF,0,180);
- 更进一步
如果我希望水量是30%,80%或者别的值呢?其实只需要修改正弦值的周期即可。具体代码如下(已省略set方法) :
/**
* Created by Idtk on 2016/6/19.
* Blog : http://www.idtkm.com
* GitHub : https://github.com/Idtk
* 描述 : 显示百分比注水球
*/
public class Bezier extends View {
private Paint mPaint,mPaint2;
private Path mPath = new Path();
protected int mViewWidth,mViewHeight;
protected int mWidth,mHeight;
private float r,rArc,x;
private float percent=0.5f;
private RectF rectF;
private PointF mPointF = new PointF(0,0);
public Bezier2(Context context) {
this(context, null);
}
public Bezier2(Context context, AttributeSet attrs) {
super(context, attrs);
mPaint = new Paint();
mPaint.setColor(Color.BLACK);
mPaint.setStrokeWidth(3);
mPaint.setStyle(Paint.Style.STROKE);
mPaint.setTextSize(100);
mPaint2 = new Paint();
mPaint2.setColor(Color.CYAN);
mPaint2.setStrokeWidth(8);
mPaint2.setStyle(Paint.Style.FILL);
}
@Override
protected void onSizeChanged(int w, int h, int oldw, int oldh) {
super.onSizeChanged(w, h, oldw, oldh);
mViewWidth = w;
mViewHeight = h;
mWidth = mViewWidth - getPaddingLeft() - getPaddingRight();
mHeight = mViewHeight - getPaddingTop() - getPaddingBottom();
r = Math.min(mWidth,mHeight)*0.4f;
rectF = new RectF(-r,-r,r,r);
}
@Override
protected void onDraw(Canvas canvas) {
// super.onDraw(canvas);
canvas.translate(mViewWidth/2,mViewHeight/2);
canvas.drawCircle(0,0,r,mPaint);
rArc = r*(1-2*percent);
double angle= Math.acos((double) rArc/r);
x = r*(float) Math.sin(angle);
mPath.addArc(rectF,90-(float) Math.toDegrees(angle),(float) Math.toDegrees(angle)*2);
mPath.moveTo(-x,rArc);
mPath.rQuadTo(x/2,-r/8,x,0);
mPath.rQuadTo(x/2,r/8,x,0);
canvas.drawPath(mPath,mPaint2);
mPath.rewind();
NumberFormat numberFormat =NumberFormat.getPercentInstance();
numberFormat.setMinimumFractionDigits(1);
textCenter(new String[]{numberFormat.format(percent)},mPaint,canvas,mPointF, Paint.Align.CENTER);
}
/**
* 多行文本居中、居右、居左
* @param strings 文本字符串列表
* @param paint 画笔
* @param canvas 画布
* @param point 点的坐标
* @param align 居中、居右、居左
*/
protected void textCenter(String[] strings, Paint paint, Canvas canvas, PointF point, Paint.Align align){
paint.setTextAlign(align);
Paint.FontMetrics fontMetrics= paint.getFontMetrics();
float top = fontMetrics.top;
float bottom = fontMetrics.bottom;
int length = strings.length;
float total = (length-1)*(-top+bottom)+(-fontMetrics.ascent+fontMetrics.descent);
float offset = total/2-bottom;
for (int i = 0; i < length; i++) {
float yAxis = -(length - i - 1) * (-top + bottom) + offset;
canvas.drawText(strings[i], point.x, point.y + yAxis, paint);
}
}
}
Path.cubicTo是Android的三次贝塞尔曲线的API,示例如下。
@Override
protected void onSizeChanged(int w, int h, int oldw, int oldh) {
super.onSizeChanged(w, h, oldw, oldh);
mViewWidth = w;
mViewHeight = h;
mWidth = mViewWidth - getPaddingLeft() - getPaddingRight();
mHeight = mViewHeight - getPaddingTop() - getPaddingBottom();
r = Math.min(mWidth,mHeight)*0.4f;
start.x = -r;
start.y = 0;
control1.x = -r/2;
control1.y = -r/2;
control2.x = r/2;
control2.y = r/2;
end.x = r;
end.y = 0;
}
@Override
protected void onDraw(Canvas canvas) {
canvas.translate(mViewWidth/2,mViewHeight/2);
mPaint.setColor(Color.MAGENTA);
mPaint.setStrokeWidth(8);
mPath.moveTo(start.x,start.y);
mPath.cubicTo(control1.x,control1.y,control2.x,control2.y,end.x,end.y);
canvas.drawPath(mPath,mPaint);
mPath.rewind();
mPaint.setColor(Color.GRAY);
mPaint.setStrokeWidth(20);
canvas.drawPoints(new float[]{
start.x,start.y,
end.x,end.y,
control1.x,control1.y,
control2.x,control2.y
},mPaint);
}
是不是和之前quadTo生成的水纹很像?如果想要在上面的百分比注水球类中加入动画,并且不要求一定是正弦波的情况下,使用cubicTo可以更为方便。
我最近在做的开源图表库SmallChart中绘制曲线时,就是用了cubicTo。同时使用了MPChart项目中的算法,对高阶贝塞尔曲线进行了降阶,相关代码如下 :
cubicPath.moveTo((cur.x-xAxisData.getMinimum())*xAxisData.getAxisScale(),
-(cur.y-yAxisData.getMinimum())*yAxisData.getAxisScale()*animatedValue);
for (int j=1; j< curveData.getValue().size(); j++){
prevPrev = curveData.getValue().get(j == 1 ? 0 : j - 2);
prev = curveData.getValue().get(j-1);
cur = curveData.getValue().get(j);
next = curveData.getValue().size() > j+1 ? curveData.getValue().get(j+1) : cur;
prevDx = (cur.x-prevPrev.x)*intensity*xAxisData.getAxisScale();
prevDy = (cur.y-prevPrev.y)*intensity*yAxisData.getAxisScale();
curDx = (next.x-prev.x)*intensity*xAxisData.getAxisScale();
curDy = (next.y-prev.y)*intensity*yAxisData.getAxisScale();
cubicPath.cubicTo((prev.x-xAxisData.getMinimum())*xAxisData.getAxisScale()+prevDx,
-(((prev.y-yAxisData.getMinimum())*yAxisData.getAxisScale()+prevDy)*animatedValue),
((cur.x-xAxisData.getMinimum())*xAxisData.getAxisScale()-curDx),
-(((cur.y-yAxisData.getMinimum())*yAxisData.getAxisScale()-curDy)*animatedValue),
((cur.x-xAxisData.getMinimum())*xAxisData.getAxisScale()),
-(((cur.y-yAxisData.getMinimum())*yAxisData.getAxisScale())*animatedValue));
}
canvas.save();
canvas.translate(offset,0);
cubicPaint.setColor(curveData.getColor());
canvas.drawPath(cubicPath,cubicPaint);
cubicPath.rewind();
本文介绍了Path的贝塞尔曲线,同时通过百分比注水图以及平滑曲线的例子,进行了实战。贝塞尔曲线是Android中非常重要的方法,可以实现多种效果,比如以下的几个例子:
- QQ的拖拽小红点
- 饿了吗点餐动画
- 水滴效果
- 平滑曲线
- 弹性效果
如果在阅读过程中,有任何疑问与问题,欢迎与我联系。
博客:www.idtkm.com
GitHub:https://github.com/Idtk
微博:http://weibo.com/Idtk
邮箱:IdtkMa@gmail.com