什么是DES加密?

想知道它的设计思想
关注者
64
被浏览
149,738

9 个回答

一、DES算法的历史

  美国国家标准局1973年开始研究除国防部外的其它部门的计算机系统的数据加密标准,于1973年5月15日和1974年8月27日先后两次向公众发出了征求加密算法的公告。加密算法要达到的目的(通常称为DES 密码算法要求)主要为以下四点:


☆提供高质量的数据保护,防止数据未经授权的泄露和未被察觉的修改;

☆具有相当高的复杂性,使得破译的开销超过可能获得的利益,同时又要便于理解和掌握;

☆DES密码体制的安全性应该不依赖于算法的保密,其安全性仅以加密密钥的保密为基础;

☆实现经济,运行有效,并且适用于多种完全不同的应用。


1977年1月,美国政府颁布:采纳IBM公司设计的方案作为非机密数据的正式

数据加密标准(DES Data Encryption Standard)。


二、DES算法的应用

  目前在国内,随着三金工程尤其是金卡工程的启动,DES算法在POS、ATM、磁卡及智能卡(IC卡)、加油站、高速公路收费站等领域被广泛应用,以此来实现关键数据的保密,如信用卡持卡人的PIN的加密传输,IC卡与POS间的双向认证、金融交易数据包的MAC校验等,均用到DES算法。



Java的DES加密例子

import java.security.SecureRandom;
import javax.crypto.spec.DESKeySpec;
import javax.crypto.SecretKeyFactory;
import javax.crypto.SecretKey;
import javax.crypto.Cipher;

/**
 * DES加密介绍 DES是一种对称加密算法,所谓对称加密算法即:加密和解密使用相同密钥的算法。DES加密算法出自IBM的研究,
 * 后来被美国政府正式采用,之后开始广泛流传,但是近些年使用越来越少,因为DES使用56位密钥,以现代计算能力,
 * 24小时内即可被破解。虽然如此,在某些简单应用中,我们还是可以使用DES加密算法,本文简单讲解DES的JAVA实现 。
 * 注意:DES加密和解密过程中,密钥长度都必须是8的倍数
 */
public class DES
{
	public DES()
	{
	}

	// 测试
	public static void main(String args[])
	{
		// 待加密内容
		String str = "测试内容";
		// 密码,长度要是8的倍数
		String password = "9588028820109132570743325311898426347857298773549468758875018579537757772163084478873699447306034466200616411960574122434059469100235892702736860872901247123456";

		byte[] result = DES.encrypt(str.getBytes(), password);
		System.out.println("加密后:" + new String(result));

		// 直接将如上内容解密
		try
		{
			byte[] decryResult = DES.decrypt(result, password);
			System.out.println("解密后:" + new String(decryResult));
		} catch (Exception e1)
		{
			e1.printStackTrace();
		}

	}

	/**
	 * 加密
	 * 
	 * @param datasource
	 *            byte[]
	 * @param password
	 *            String
	 * @return byte[]
	 */
	public static byte[] encrypt(byte[] datasource, String password)
	{
		try
		{
			SecureRandom random = new SecureRandom();
			DESKeySpec desKey = new DESKeySpec(password.getBytes());
			// 创建一个密匙工厂,然后用它把DESKeySpec转换成
			SecretKeyFactory keyFactory = SecretKeyFactory.getInstance("DES");
			SecretKey securekey = keyFactory.generateSecret(desKey);
			// Cipher对象实际完成加密操作
			Cipher cipher = Cipher.getInstance("DES");
			// 用密匙初始化Cipher对象
			cipher.init(Cipher.ENCRYPT_MODE, securekey, random);
			// 现在,获取数据并加密
			// 正式执行加密操作
			return cipher.doFinal(datasource);
		} catch (Throwable e)
		{
			e.printStackTrace();
		}
		return null;
	}

	/**
	 * 解密
	 * 
	 * @param src
	 *            byte[]
	 * @param password
	 *            String
	 * @return byte[]
	 * @throws Exception
	 */
	public static byte[] decrypt(byte[] src, String password) throws Exception
	{
		// DES算法要求有一个可信任的随机数源
		SecureRandom random = new SecureRandom();
		// 创建一个DESKeySpec对象
		DESKeySpec desKey = new DESKeySpec(password.getBytes());
		// 创建一个密匙工厂
		SecretKeyFactory keyFactory = SecretKeyFactory.getInstance("DES");
		// 将DESKeySpec对象转换成SecretKey对象
		SecretKey securekey = keyFactory.generateSecret(desKey);
		// Cipher对象实际完成解密操作
		Cipher cipher = Cipher.getInstance("DES");
		// 用密匙初始化Cipher对象
		cipher.init(Cipher.DECRYPT_MODE, securekey, random);
		// 真正开始解密操作
		return cipher.doFinal(src);
	}
}

三、DES算法的原理

DES算法的入口参数有三个:Key、Data、Mode

Key为8个字节共64位,是DES算法的工作密钥;

Data也为8个字节64位,是要被加密或被解密的数据;

Mode为DES的工作方式,有两种:加密或解密。



为了网络上信息传输的安全(防止第三方窃取信息看到明文),发送发和接收方分别进行加密和解密,这样信息在网络上传输的时候就是相对安全的。

四、DES的加密类别

发送方和接收方进行加密和解密的算法从密钥上可以分为两类

1:对称加密技术

加密系统的加密密钥和解密密钥相同,或者虽然不同,但是可以轻松的从一个密钥推导出另外的一个密钥。

2:非对称加密技术,与对称加密技术相反

DES属于第一种对称加密技术

DES(数据加密标准)算法主要采用替换和移位的方式进行加密,它用56位(64位密钥只有56位有效)对64位二进制数据块进行加密,每次加密对64位的输入数据进行16轮编码,经过一系列替换和移位后,输入的64位原数据转换成完全不同的64位输出数据。




DES算法是这样工作的:如Mode为加密,则用Key 去把数据Data进行加密, 生成Data的密码形式(64位)作为DES的输出结果;如Mode为解密,则用Key去把密码形式的数据Data解密,还原为Data的明码形式(64位)作为DES的输出结果。在通信网络的两端,双方约定一致的Key,在通信的源点用Key对核心数据进行DES加密,然后以密码形式在公共通信网(如电话网)中传输到通信网络的终点,数据到达目的地后,用同样的Key对密码数据进行解密,便再现了明码形式的核心数据。这样,便保证了核心数据(如PIN、MAC等)在公共通信网中传输的安全性和可靠性。
  通过定期在通信网络的源端和目的端同时改用新的Key,便能更进一步提高数据的保密性,这正是现在金融交易网络的流行做法。
  DES算法详述
  DES算法把64位的明文输入块变为64位的密文输出块,它所使用的密钥也是64位,整个算法的主流程图如下:
其功能是把输入的64位数据块按位重新组合,并把输出分为L0、R0两部分,每部分各长32位,其置换规则见下表:
58,50,12,34,26,18,10,2,60,52,44,36,28,20,12,4,
  62,54,46,38,30,22,14,6,64,56,48,40,32,24,16,8,
  57,49,41,33,25,17, 9,1,59,51,43,35,27,19,11,3,
  61,53,45,37,29,21,13,5,63,55,47,39,31,23,15,7,
  即将输入的第58位换到第一位,第50位换到第2位,...,依此类推,最后一位是原来的第7位。L0、R0则是换位输出后的两部分,L0是输出的左32位,R0 是右32位,例:设置换前的输入值为D1D2D3......D64,则经过初始置换后的结果为:L0=D58D50...D8;R0=D57D49...D7。
  经过16次迭代运算后。得到L16、R16,将此作为输入,进行逆置换,即得到密文输出。逆置换正好是初始置的逆运算,例如,第1位经过初始置换后,处于第40位,而通过逆置换,又将第40位换回到第1位,其逆置换规则如下表所示:
  40,8,48,16,56,24,64,32,39,7,47,15,55,23,63,31,
  38,6,46,14,54,22,62,30,37,5,45,13,53,21,61,29,
  36,4,44,12,52,20,60,28,35,3,43,11,51,19,59,27,
  34,2,42,10,50,18,58 26,33,1,41, 9,49,17,57,25,
放大换位表
  32, 1, 2, 3, 4, 5, 4, 5, 6, 7, 8, 9, 8, 9, 10,11,
  12,13,12,13,14,15,16,17,16,17,18,19,20,21,20,21,
  22,23,24,25,24,25,26,27,28,29,28,29,30,31,32, 1,
单纯换位表
  16,7,20,21,29,12,28,17, 1,15,23,26, 5,18,31,10,
  2,8,24,14,32,27, 3, 9,19,13,30, 6,22,11, 4,25,
  在f(Ri,Ki)算法描述图中,S1,S2...S8为选择函数,其功能是把6bit数据变为4bit数据。下面给出选择函数Si(i=1,2......的功能表:
选择函数Si
S1:
  14,4,13,1,2,15,11,8,3,10,6,12,5,9,0,7,
  0,15,7,4,14,2,13,1,10,6,12,11,9,5,3,8,
  4,1,14,8,13,6,2,11,15,12,9,7,3,10,5,0,
  15,12,8,2,4,9,1,7,5,11,3,14,10,0,6,13,
S2:
  15,1,8,14,6,11,3,4,9,7,2,13,12,0,5,10,
  3,13,4,7,15,2,8,14,12,0,1,10,6,9,11,5,
  0,14,7,11,10,4,13,1,5,8,12,6,9,3,2,15,
  13,8,10,1,3,15,4,2,11,6,7,12,0,5,14,9,
S3:
  10,0,9,14,6,3,15,5,1,13,12,7,11,4,2,8,
  13,7,0,9,3,4,6,10,2,8,5,14,12,11,15,1,
  13,6,4,9,8,15,3,0,11,1,2,12,5,10,14,7,
  1,10,13,0,6,9,8,7,4,15,14,3,11,5,2,12,
S4:
  7,13,14,3,0,6,9,10,1,2,8,5,11,12,4,15,
  13,8,11,5,6,15,0,3,4,7,2,12,1,10,14,9,
  10,6,9,0,12,11,7,13,15,1,3,14,5,2,8,4,
  3,15,0,6,10,1,13,8,9,4,5,11,12,7,2,14,
S5:
  2,12,4,1,7,10,11,6,8,5,3,15,13,0,14,9,
  14,11,2,12,4,7,13,1,5,0,15,10,3,9,8,6,
  4,2,1,11,10,13,7,8,15,9,12,5,6,3,0,14,
  11,8,12,7,1,14,2,13,6,15,0,9,10,4,5,3,
S6:
  12,1,10,15,9,2,6,8,0,13,3,4,14,7,5,11,
  10,15,4,2,7,12,9,5,6,1,13,14,0,11,3,8,
  9,14,15,5,2,8,12,3,7,0,4,10,1,13,11,6,
  4,3,2,12,9,5,15,10,11,14,1,7,6,0,8,13,
S7:
  4,11,2,14,15,0,8,13,3,12,9,7,5,10,6,1,
  13,0,11,7,4,9,1,10,14,3,5,12,2,15,8,6,
  1,4,11,13,12,3,7,14,10,15,6,8,0,5,9,2,
  6,11,13,8,1,4,10,7,9,5,0,15,14,2,3,12,
S8:
  13,2,8,4,6,15,11,1,10,9,3,14,5,0,12,7,
  1,15,13,8,10,3,7,4,12,5,6,11,0,14,9,2,
  7,11,4,1,9,12,14,2,0,6,10,13,15,3,5,8,
  2,1,14,7,4,10,8,13,15,12,9,0,3,5,6,11,
在此以S1为例说明其功能,我们可以看到:在S1中,共有4行数据,命名为0,1、2、3行;每行有16列,命名为0、1、2、3,......,14、15列。
  现设输入为: D=D1D2D3D4D5D6
令:列=D2D3D4D5
  行=D1D6
  然后在S1表中查得对应的数,以4位二进制表示,此即为选择函数S1的输出。下面给出子密钥Ki(48bit)的生成算法
  从子密钥Ki的生成算法描述图中我们可以看到:初始Key值为64位,但DES算法规定,其中第8、16、......64位是奇偶校验位,不参与DES运算。故Key 实际可用位数便只有56位。即:经过缩小选择换位表1的变换后,Key 的位数由64 位变成了56位,此56位分为C0、D0两部分,各28位,然后分别进行第1次循环左移,得到C1、D1,将C1(28位)、D1(28位)合并得到56位,再经过缩小选择换位2,从而便得到了密钥K0(48位)。依此类推,便可得到K1、K2、......、K15,不过需要注意的是,16次循环左移对应的左移位数要依据下述规则进行:
循环左移位数
1,1,2,2,2,2,2,2,1,2,2,2,2,2,2,1
  以上介绍了DES算法的加密过程。DES算法的解密过程是一样的,区别仅仅在于第一次迭代时用子密钥K15,第二次K14、......,最后一次用K0,算法本身并没有任何变化。

二、DES算法理论图解

DES的算法是对称的,既可用于加密又可用于解密。下图是它的算法粗框图。其具体运算过程有如下七步。
<缺:找到补上>

三、DES算法的应用误区 

  DES算法具有极高安全性,到目前为止,除了用穷举搜索法对DES算法进行攻击外,还没有发现更有效的办法。而56位长的密钥的穷举空间为256,这意味着如果一台计算机的速度是每一秒种检测一百万个密钥,则它搜索完全部密钥就需要将近2285年的时间,可见,这是难以实现的,当然,随着科学技术的发展,当出现超高速计算机后,我们可考虑把DES密钥的长度再增长一些,以此来达到更高的保密程度。
  由上述DES算法介绍我们可以看到:DES算法中只用到64位密钥中的其中56位,而第8、16、24、......64位8个位并未参与DES运算,这一点,向我们提出了一个应用上的要求,即DES的安全性是基于除了8,16,24,......64位外的其余56位的组合变化256才得以保证的。因此,在实际应用中,我们应避开使用第8,16,24,......64位作为有效数据位,而使用其它的56位作为有效数据位,才能保证DES算法安全可靠地发挥作用。如果不了解这一点,把密钥Key的8,16,24,..... .64位作为有效数据使用,将不能保证DES加密数据的安全性,对运用DES来达到保密作用的系统产生数据被破译的危险,这正是DES算法在应用上的误区,留下了被人攻击、被人破译的极大隐患。




五、DES的破解
PostScript:
DES 被证明是可以破解的,明文+密钥=密文,这个公式只要知道任何两个,就可以推导出第三个

在已经知道明文和对应密文的情况下,通过穷举和暴力破解是可以破解DES的。



《秘密密钥挑战赛》节选

  1997年1月28日,美国的RSA数据安全公司在RSA安全年会上公布了一项“秘密密钥挑战”(Secret-KeyChallange)竞赛,分别悬赏$1000、$5000、$10000用于攻破不同密钥长度的RC5密码算法,同时还悬赏$10000破密钥长度为56bits的DES算法。

  加密明文的密钥是随机选取的,明文和密钥都被严格保密,只向挑战者们公布密文和所用的初始化向量。解出的密钥以E-Mail的方式迅速报告给RSA公司,第一个解出密钥的人即成为相应挑战赛的胜利者。加利福尼亚大学伯克利分校的研究生IanGoldberg用大约250台工作站组成的网络,只用了3.5小时就攻破了40位的RC5算法。在瑞士建立的一个欧洲小组使用了遍及欧洲的3,500台机器,13天时间攻破48位密码。Brewer预计在类似的环境中攻破一个56位的密码需要大约22年。

  DES分组加密算法是美国政府于1977年公布的数据加密标准,已在银行业和金融业使用了近二十年,自从其公布起,DES就一直不断地被人们研究和攻击,它是世界上最知名的、使用最广泛的分组密码算法。目前攻击DES的最有效的办法是密钥穷举攻击,Verser设计了一个密钥穷举攻击程序,用以穷举所有可能的DES密钥,直至找到正确的那一个密钥,这个计算机程序可以从Internet上分发和下载。他把这项计划命名为DESCHALL,这项计划开始时只有几百人参与,最终吸引了数万名志愿者参加。每有一名新的志愿者加入,DESCHALL小组就为其分配一部分密钥空间让其测试,这样,正确的密钥最终会在某一名志愿者的计算机中出现。参与DESCHALL计划的Internet志愿者使用了企业、高校和政府大量的计算资源,其中有计算能力强大的小型机、工作站,更不乏普通的PC机,参与的志愿者或计算机的具体数字尚未有精确的统计,但根据IP地址统计至少有78156个。基于IP地址的统计还显示,每天最多有1400台志愿计算机在工作。

  美国克罗拉多州的程序员RockeVerser从97年3月13日起,在Internet上数万名志愿者的协同工作下,在RSA挑战赛公布之后的第140天、DESCHALL计划实施的第96天,6月17日的晚10点39分,盐湖城iNetZ公司的职员Michael Sanders在他那台主频为奔腾90Hz、16M内存的PC机上成功地解出了DES的明文,找到了正确的密钥(8558891ab0c851b6)。RockeVerser的这次胜利,很有可能成为其最后一击,标志着DES时代的即将结束。这将作为密码学上的一个里程碑载入史册。

  DES的全部密钥穷举量为7.2e16,DESCHALL计划完成时,搜索的密钥量为1.773e16,占全部密钥穷举量的24.6%,平均每天最多搜索6.0e14个,每秒最多搜索7,0e9个,其中最后24小时搜索了5.59e14个,占全部穷举量的0.7%,假若一开始就以这个速度搜索,则DESCHALL计划只需32天即可完成。DES被破的消息公布之后,舆论界顿时哗然,因为依靠Internet的分布式计算能力,公众已经可以轻而易举地攻破DES。在如此短的时间内DES被攻破的消息让那些使用DES进行保密通信的机构、公司和个人从心里打了一个寒颤。英国剑桥的资金和技术决策主任DavidWeisman认为,DES的破解应使人们认识到随着计算能力的增长,必须相应增加算法的密钥长度。

  此次DESCHALL在96天中攻破DES,还是有一定的“幸运”因素在内。根据统计资料,整个搜索过程遍历密钥空间的仅为24.6%,这就大大节约了穷搜所需时间。截止到目前,56比特的RC5挑战至今尚未被攻破。这样的挑战还会继续进行,虽然未见分晓,但可以认为,不论是DES、RC5还是其它别的算法,也不论算法的强弱,56比特密钥的使用方式都是不保密的。

  在DESCHALL向DES发起穷举攻击的同时,从瑞典发起的一个攻击小组,SolNET也对DES发起了攻击。由于美国严禁密钥攻击算法出口到除加拿大的其他国家,因此DESCHALL计划仅限于美国和加拿大执行。而SolNET通过向世界发布他们的软件,也取得了可观的成绩。他们的搜索速度最高达到了每秒30亿密钥组合,并在不断加快,到竞赛结束时他们总共搜索了近一亿亿可能密钥,约为密钥总空间的七分之一。

  在DESCHALL完成了他们的工作后,SolNET在网页上发表了一条简短的消息,宣布SolNET的工作停止,并请仍然有兴趣的人参加Bovine RC5攻击计划对56位RC5密钥的攻击。事实上,现在已有数十个小组开始了这项工作,而Bovine看来是很有希望赢得这次竞赛的小组之一。

是时候上我画的图了

引用此图,麻烦注明我的ID:GeneralAndroid

代码实现:DES算法原理与Java实现 - CSDN博客